MMP Learning Seminar Week 49.

Content:

Existence of log Canonical closures.

Proof of the Corollaries.

Existence of log canonical closures:

Theorem 1.1: $f: X \longrightarrow U$ projective morphism of normal varieties, $\triangle = Q - divisor s.t (X, \triangle) dlt$ and $S = |\triangle|$ the non-klt locus. Assume there exists

and $5 = L\Delta J$ the non-Kit locus. Assume there exists $U^{\circ} \subseteq U$ for which $(X^{\circ}, \Delta^{\circ}) = (X, \Delta) \times U^{\circ}$ has a

pood minimal model over U° any stratum of S
intersects X°. Then (X, \D) has a pood minimal model over U.

Canonical bundle formula:

Theorem: Let (X,Δ) be a lit pair and $f(X) \to U$

a projective morphism over a hormal variety U.

Then there exists a commutative diagram:

a) μ birational, h equidimensional fibration, X' Q-factorial. toroidal, Y smooth \leftarrow semistable reduction

b) (X', Δ') has toroidal singularities,

μ* (Ox' (m(Kx'+Δ')) = (Ox (m(Kx+Δ))) ∀m.

c) J g - nef over U, $B \ge 0$ s.t we can write $h \ne 0_{x'}$ ($J m (K_{x'} + \Delta')$) $\simeq 0_T (J m (K_T + J + B))$.

Caronical bundle formula: (X, A) le pair. (Kx+A)-MMP $Kx' + \Delta'$ semiample over U. X ----> X' $\mathbb{K}_{\mathsf{X}'} + \Delta' \sim \mathbf{Q}, \mathsf{Y} o.$ υ←—Υ @ 15 a log Calabi-Tau dibration. Kx1+ D' ~ a 8* (Lr), Lr ample Q-divsor Q: Can we write Ly as a log pair?

Ly = Ky + Dy in some meaningful way? Expectation: We can find a le pair (T, Dr) such that Kx'+D' ~a ex (Kx+Dx) related log canonical centres. 7

Canonical bundle formula: Kx+D' ~ ar o X Then we can find J which is a net b-divisor. Ar 20 s.t (Y. Dr) has le sino and $\forall x' + \Delta' \sim 2 * (\forall r + \Delta r + J)$ measures the mersures variation in moduli of the sine fibers in fibors. costimension 1 of C.

Corollary 1.2 (Existence of lc closures):

Let T° be an open subset of a normal approperty T° . T° be a projective morphism and T° , T° be a log canonical pair.

Then, there exists T° and a lagrange to the exists T° .

Then, there exists $f: X \longrightarrow U$ projective and a lapair (X, \triangle) s.t. $X^{\circ} = X \times v U^{\circ}$ is an open and $\triangle^{\circ} = \triangle |_{X^{\circ}}$.

Proof:
$$f^{c}: X^{c} \longrightarrow \mathcal{U}$$
 projective. $\Delta^{c} = closure of \Delta in X$
 $X \xrightarrow{\pi c} X^{c}$ log resolution of

 $(X^{c}, \Delta^{c} \cup f^{c-1} (\mathcal{U} \setminus \mathcal{U}^{\circ}))$ Write

 $(\pi \mid x^{\circ})^{*} (K_{X^{\circ}} + \Delta^{\circ}) = K_{\overline{X}^{\circ}} + \overline{\Delta}^{\circ} - F^{\circ}$

effective with

no comon comp.

where $\overline{X}^{\circ} = \pi^{-1}(X^{\circ})$.

We have a commutative diagram:

$$(\overline{X}, \overline{\Delta})$$
 and the morphism $\overline{X} \longrightarrow X^c$ selection

the assumption 1.1 over X°.

Therefore, we can take $(X, \angle L)$ to be the ample model of $(\overline{X}, \overline{\angle})$ over X^c . We have that.

$$(X, \triangle) \times _{\mathcal{O}} \mathcal{O}^{\mathfrak{d}} = (X^{\mathfrak{e}}, \triangle^{\mathfrak{e}}).$$

Semistable pairs & reduction: A morphism f: (X, A) -> U from 2 k p21, to a smooth curve is said to be semistable if for all pet, we have that (X, supp (A) + Xp) is log smooth & $Xp = f^{-1}(p)$ reduced. Semistable reduction: (Toroidal embeddys 73').

X normal over G, $f: X \longrightarrow C$ flat to 2 smooth corre Theorem: There exists a finite morphism $C' \longrightarrow C$ from C' smooth and a projective resolution $X'' \longrightarrow X'_n$ such that $X'' \xrightarrow{f''} C$ satisfies the following. (1) (f") * (c') U Exco) is snc for every c'EC! (2) $(f^n)^*$ (c') is reduced for every c' \in C!.

Semistable reduction:

foroidal any resolution f* (c) = m X:

Corollary 1.4: U smooth curve. fo: Xo -> U affine finite type le marphism Then, there exists a finite dominant base change 0. T — T and a projective morphism. Clas f: X → Ω z.f: $\chi \circ \chi_{\sigma} \widetilde{v} \subseteq \chi$ and $\iint_{X^{\circ} \times_{\sigma} \widetilde{v}} = f^{\circ} \chi_{\sigma} \Theta$ $P_{rooj}: \int X^c \longrightarrow U \qquad \theta: \stackrel{\times}{U} \longrightarrow U,$ take a log resolution $\overline{X} \xrightarrow{TC} (X^c, X^c | X^o)$ $\overline{f}: (X, Ex(TC)) \longrightarrow \overline{G}$ is semistable Denote $\overline{X}^{\circ} = \widetilde{\pi}^{-1}(\overline{X}^{\circ})$, \widetilde{X}° has le size.

We have a commutable dispram: $\Sigma_{\circ} \longrightarrow \Sigma - - \cdot > \times$ $|\widetilde{\pi}|_{\widetilde{X}^{0}} | \widetilde{\pi} |$ $|\widetilde{\chi}^{0}|_{\widetilde{X}^{0}} | \widetilde{\chi}^{0} |$ $|\widetilde{\chi}^{0}|_{\widetilde{X}^{0}} | \widetilde{\chi}^{0}|$ $|\widetilde{\chi}^{0}|_{\widetilde{X}^{0}} | \widetilde{\chi}^{0}|_{\widetilde{X}^{0}} | \widetilde{\chi}^{0}|$ $|\widetilde{\chi}^{0}|_{\widetilde{X}^{0}} | \widetilde{\chi}^{0}|_{\widetilde{X}^{0}} | \widetilde{\chi}^{0}|_{\widetilde{X}^{0}} |$ $|\widetilde{\chi}^{0}|_{\widetilde{X}^{0}} | \widetilde{\chi}^{0}|_{\widetilde{X}^{0}} |$ Wribe (RIXO)* KXO = KXO + E - F. $\overline{\triangle} := \text{closure of } E^{\bullet} \text{ in } \overline{X}$ (X, \(\overline{\Sigma}\)) is a family of semistable pairs over \(\overline{\Sigma}\). $(\overline{X}, \overline{\Delta} + \overline{X}p)$ is all for every $p \in \mathcal{F}$. We can apply Theorem 1.1 to (X, Δ) over X^c where we choose the open set to be \widetilde{X}° . $X = Pro_i R (\overline{X} / \hat{X}^c, K_{\overline{X}} + \overline{\Delta}).$ The induced map X -> & is an le morphism.

X° is les then 12 is an isomorphism over X:

Corollary 1.5: $f^{\circ}: X^{\circ} \longrightarrow \mathcal{T}^{\circ}$ projective $(X^{\circ}, \Delta^{\circ})$ lc, $\mathcal{T}^{\circ} p$ is a germ of a smooth curve $\mathcal{T} \setminus \{p\} = \mathcal{T}^{\circ}, \quad X_{\times^{\circ}} + \Delta^{\circ} \text{ is } f \text{-ample}$.

Then, there exists $\theta: \mathcal{T} \longrightarrow \mathcal{T}$ Johninant

base charge, (X, Δ) log canonical, $(X, \Delta) \longrightarrow \mathcal{T}$ s.t $K_{\times} + \Delta$ is ample over \mathcal{T}

and the restriction of (X, D) to the preiminge

O'(U°) is isomorphic to (X°, 0°) x vo.

Corollary 1.8: Let f: X -> Z be a flipping contraction for a lop canonical pair (X, \D). Then the flip exists. dimsorial non-kle conte V* (Kx+Δ+I/m) = Kx+Δx+Ir/m+5,1.151 g-factoral $(Y, \Delta Y)$ --> $(Y', \Delta Y')$ somiumple over Z. Q-feboral modification \ $(X/\Delta) \qquad (X^{+}, \Delta^{+}) \qquad -(K_{\times} + \Delta) \quad \text{ample over } Z.$ $P = 1 \qquad \qquad \Gamma \in [-m(K_{\times} + \Delta)] \qquad \qquad (X/\Delta + \Gamma/m)$ (X,X) (X, D+ I/m) ~ lc Ψ* (Kx+Δ) = Kx+Δx+S,1..+Sr good minimal model over Z.